Лампа накаливания и её особенности

Характеристики

Лампы накала обладают такими характеристиками:

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Интересно! В Америке и Канаде используются другие стандарты цоколей по причине иного напряжения в сети. Для них привычные размеры резьбы в мм: 12, 17, 26 и 39. При отражении размера цоколя на лампочке перед цифрами стоит так же как и у нас литера Е.

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

  • Специфика конструкции и свойства. «Б» указывает на аргоновую биспиральную ЛН, «В» – на содержание внутри вакуума, «Г» – на то, что в лампу закачан газ, «БК» – биспиральная криптоновая, «МЛ» – молочный цвет колбы, «МТ» – матовая, «О» – опаловая.
  • О назначении лампочки расскажет вторая часть маркировки. «Ж» – железнодорожная, «КМ» – коммутационная, «СМ» – для самолетов, «А» – для автомобилей, «ПЖ» – лампа высокой мощности для использования в прожекторах.
  • Форму обозначают так: «А» – абажур, «Д» – декоративная, «В» – витая.
  • Первые цифры – это номинальное напряжение.

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

Возможные риски от света КЛЛ

Вред люминесцентных ламп, конечно, уже доказан, но в чем же он состоит? Для начала необходимо перечислить все возможные заболевания, которые может вызвать излучение энергосберегающих ламп, а после уже более подробно рассмотреть каждое из них и причины, их вызывающие. Итак, основные риски:

  • рак, эпилепсия и мигрень;
  • слепота;
  • радиационное отравление.

Теперь имеет смысл понять, чем именно энергосберегающая лампа вредна для здоровья человека и что может вызвать такие серьезные осложнения.

Рак, эпилепсия, мигрень

Здесь опасность исходит именно от ультрафиолетового излучения, проходящего сквозь микротрещины люминофора и стекла. Тех объемов, которые попадают на человека при работе таких осветительных приборов, вполне достаточно для повреждения клеток кожи, что впоследствии приводит их к отмиранию. Отсюда преждевременное старение и риск меланомы, хотя производитель утверждает, что слой люминофора не дает излучению выйти наружу. И все-таки исследованиями доказано и наличие микротрещин, и опасные дозы ультрафиолетового излучения.

По той же причине начинают отмирать и клетки мозга. Первыми признаками этого становятся частые головные боли, позднее приступы мигрени, а в более серьезных случаях и эпилептические припадки.

Слепота

Освещение при помощи КЛЛ может вызвать болезни глаз Те лампы, которые менее других расходуют электроэнергию, очень сильно влияют на зрение. В результате исследований выяснилось, что за последние годы резко возросло количество заболеваний глаз именно у тех, кто постоянно находится под светом этих ламп.

Дело в том, что для того, чтобы получить белый цвет, используется определенный состав, свойства которого схожи с ультрафиолетом. При этом главный удар приходится по сетчатке, которая очень к нему чувствительна. Как раз при долговременном попадании такого света на глаза (как во время рабочего дня) он вызывает окислительные процессы в слизистой.

Радиационное отравление

Общеизвестно, что ртуть является радиоактивным тяжелым металлом, а именно ее пары находятся внутри люминесцентной трубки. Конечно, существуют специализированные сервисы по утилизации подобных ламп, но стоимость такой услуги очень высока, и 90% тех, кто пользуется такими приборами, просто утилизирует их как бытовые отходы. Естественно, что в процессе эти лампы разбиваются и вредные пары попадают в атмосферный воздух, им дышат все, кто находится поблизости.

На улице, конечно, концентрация отравляющих веществ не столь высока. Но ведь иногда энергосберегающие лампы взрываются в процессе работы, и происходит это непосредственно в помещении. И вот тогда это никак не может пройти для организма человека без последствий, по нему будет нанесен сильнейший удар.

Одна лампа содержит около 7 микрограммов отравляющего вещества на 1 кубометр воздуха. И это притом, что официально максимально допустимый уровень составляет 0,35 микрограммов.

Естественно, что основной удар принимают на себя нервная система, печень, почки и легкие.

При появлении следующих симптомов немедленно следует обратиться к врачу:

  • появление металлического привкуса во рту;
  • головной боли, которая более похожа на мигрень;
  • кровоточивости десен;
  • сухого кашля;
  • дрожания рук;
  • озноба или горячки.

Если подобные симптомы возникли внезапно – это отравление парами ртути, и шутить с этим не стоит.

Ртуть – радиоактивный металл

Световые характеристики источников

Для сравнения параметров различных светильников нам потребуется оперировать фотометрическими терминами и сравнительными параметрами:

  • телесным углом;
  • световым потоком;
  • создаваемой освещенностью;
  • спектральной чувствительностью;
  • цветовой температурой;
  • световой отдачей.

Фотометрические термины

Телесный угол и световой поток

Базовой фотометрической величиной, характеризующей перенос энергии света источника в единицу времени по определенному направлению считается сила света. Ее измеряют в канделах.

Телесный угол ограничивает часть пространства от источника, измеряется в стерадианах. Световой поток определяется силой света в границах телесного угла, измеряется люменами.

Освещенность

Световой поток от источника света попадает на встречную поверхность, освещает ее площадь. Его действие оценивается освещенностью, измеряемую в люменах.

Для сведения: обычная лампочка накаливания мощностью 25 ватт вырабатывает световой поток около 200 лм. А дальше идет такое соответствие: 40 — 500, 60 — 850, 75 — 1200, 100 — 1700.

Сравнительные параметры

Спектральная чувствительность

Наши глаза по-разному воспринимают длину волны света. Оптимальный спектр находится на границе желтого и зеленого цветов с длиной порядка 350 нм.

Эту особенность учитывают все производители осветительных приборов.

Цветовая температура

Градация цветов, которыми обладает осветительная лампа приводится на шкале градусов Кельвина.

С учетом спектральной чувствительности на ней видно, что лампочка накаливания создает теплый белый цвет, благоприятный для человека. Галогенные источники немного светлее, но близки к ней по расположению.

Энергосберегающие люминесцентные и светодиодные источники могут создаваться с более расширенными возможностями освещения при на шкале цветовой температуры.

Световая отдача

Этим параметром оценивают световой поток источника, на который затрачивается один ватт мощности.

Световая отдача наглядно показывает, что самые большие потери электроэнергии создает лампа накаливания, а чуть меньше — галогенная.

Высокой эффективностью отмечается работа энергосберегающей люминесцентной лампы. Самое максимальное использование мощности обеспечивает светодиод.

Освежив в памяти перечисленное фотометрические критерии переходим к сравнительной оценке экономических показателей разных моделей источников света.

Выбор энергосберегающих ламп

Современные энергосберегающие лампочки, работающие на светодиодах, не загрязняющие окружающую среду и являются удобными источниками света. Если лампа будет случайно повреждена или перегорит, она не повредит здоровью, поскольку в ней нет ртути. В сравнении с традиционными лампочками накаливания либо люминесцентными аналогами такие изделия имеют много преимуществ. На их работу тратится в 9 раз меньше электроэнергии. При этом продолжительность работы превышает в 30 раз время работы обычных лампочек.

Покупая светодиодную лампу, учитывают такие факторы:

  • По типу цоколя продукция может быть резьбовой, предназначенной для обычных патронов, или штырьковой, которую используют для точечных светильников. Менее распространены софитные лампочки, которые устанавливают для устройства подсветки, штифтовые, используемые в автомобилях, и с утопленными контактами, применяемые в маленьких светильниках.
  • Напряжение питания необходимо учитывать, если в квартире часто бывают перебои в электросети. Тогда лучшим выбором станут изделия, способные светить в расширенном интервале напряжения. Такие лампы на коробке имеют маркировку 175-250 В/50 Гц.
  • Сравнение используемой мощности и яркости с обычной лампой накаливания. Часто для простоты восприятия на упаковке со светодиодными изделиями указывают, какую мощность потребляет светодиодная лампа, и насколько ярко она будет светить. Например, пометка 12 Вт=100 Вт свидетельствует о том, что изделие потребляет всего 12 Вт, но светит также интенсивно, как 100 Вт лампочка накаливания.
  • Световой поток демонстрирует, насколько может лампа осветить комнату. Это значение тем больше, чем выше мощность. Эту величину на коробке указывают в люменах.
  • Угол рассеивания меняется в зависимости от того, как располагаются светодиоды. Он может варьироваться от 30 до 360 градусов.
  • Оттенки света могут быть холодными, теплыми и универсальными.
  • Срок службы и время работы изделия также написаны на коробке в соответствии с общепринятыми европейскими стандартами. Обычно за расчетное время принимается 9000 часов — круглосуточная работа лампы в течение года. По стандарту L70 световой поток равный 40000 часов через это время снижает яркость на 30%.
  • Гарантия также косвенно свидетельствует о качестве продукции. Для некачественной продукции гарантию дают 1 год. Если же производитель уверен в качестве своей продукции, то гарантийный срок составит не меньше 3 лет.
  • Индекс цветопередачи зависит от того, какой люминофор используется в лампе. Он показывает, насколько цвет предмета в свете лампы соответствует истинному. Хорошо, если этот показатель превышает 80.

Какие параметры важны для энергосберегающих ламп для дома

Покупая лампу для дома, учитываются параметры мощности, срок эксплуатации. Второй параметр зависит от качества изготовления.

Таблица мощности

Потребление электричества зависит от мощности материала, измеряется в ваттах. Каждый вид лампочек имеет разную мощность. Но рекомендуется проводить сравнение относительно световой отдаче (сколько люмен приходится мощности на один ватт). Для наглядности рассматривается таблица мощности энергосберегающих ламп, где проводится анализ источников освещения.

Световой поток, Лм Тип источника света (лампа) / Мощность, Вт
Светодиодная Люминесцентная Галогенная Накаливания
220 2 6 15 25
415 4 8 24 40
550 6 10 30 50
710 8 12 36 60
935 10 15 45 75
1340 12 20 60 100
1700 18 24 72 120
2160 22 36 90 150
3040 26 45 120 200
3900 30 55 150 250

Производители и срок службы

Очень часто бывают ситуации, что один и тот же производитель выпустил товар разными партиями, которые получились разного качества. Но какая бы партия ни была, на каждой упаковке должен указываться срок службы. Рейтинг производителей:

  • Компанией Philips представлен огромный ассортимент светодиодных лампочек для домашнего пользования. Каждая партия проходит лабораторные исследования, которые подтверждают безопасность. Излучаемый свет не воздействует на глаза. Гарантия от производителя 2 года. Срок службы до 10 лет.
  • Компания Osram производит качественный товар. На него большой спрос на рынке. Положительные стороны светодиодного освещения данной ТМ: экономия электроэнергии, излучаемых свет по характеристикам близок к естественному, длительное использование. На упаковке указано, что рассчитана на работу 15000 часов, что эквивалентно 15 годам или 500000 включений/выключений.
  • Известный производитель Camelion с представительством в 80 странах производит товар высокого качества. Проходит контроль перед выходом на продажу. У модели BasicPower заявлена работа на 30000 световых часов. Модель BrightPower – повышенной экономичности, оснащена светодиодами новейшего поколения и с работой до 40000 часов. Товар безопасен для человека и экологии. Не требуется особых условий по утилизации. Имеют высокую ударопрочность, отсутствует ультрафиолетовое излучение. Излучаемый свет ярок, но не наносит вреда глазам, не мерцает.

Какие лампы относятся к энергосберегающим?

  1. КЛЛ (компактные люминисцентные лампы) характеризуется дугообразной формой, что позволяет располагать её в маленьких светильниках. Они почти всегда используются в домашних условиях, являясь оптимальной заменой обычных ламп накаливания. Нередко они входят в комплектацию нестандартных осветительных приборов. В составе такой лампочки находятся инертные газы (известные многим аргон и неон), а также ртутные пары. Внешний корпус отделан люминофором. Благодаря сталкиванию электронов со ртутными компонентами, выделяется незаметное внешне УФ-излучение, превращающееся в рассеянный свет (этому способствует люминофорное покрытие). Компактные лампы состоят из трёх деталей: цоколя для подсоединения к электросети, регулирующего устройства электронного типа для зажигания и поддержания горения лампочки. Он выполняет переход с электросети 220 Вт до того, которое требуется для стабильной работы лампы без мигания. Третьим компонентом прибора являются колбы, представляющие собой внешнюю оболочку лампы. По причине различия указанных элементов, обусловливается и разновидность КЛЛ: к примеру, по цвету излучения, особенностями цоколя (бывают категории 2D, часто устанавливаемых в душевых кабинах, E27 — для обычного патрона, Е14 — для уменьшенного патрона, Е40 — для большого патрона).
  2. Линейные люминесцентные лампы (ЛЛЛ) бывают кольцевыми, прямыми, или специфической U-вариации. Прямолинейные устройства имеют форму длинных стеклянных труб, на концах которой располагаются ножки из стекла, где, в свою очередь, закреплены электроды. На внутренней поверхности лампы находится покрытие люминофора, а сама полость трубки заполнена инертными газами и ртутью. Безопасность людей от губящего испарения ртути гарантирует герметичное запаивание лампы. Линейные лампы различаются по показателям диаметра и длины трубки, ширине цокольного элемента. Как правило, чем больше габариты ЛЛ, тем больший получается расход электричества. Зачастую такие ЛЛ применяются на производственных заводах и предприятиях, в офисах и местах общественного значения.Самую большую популярность среди потребителей получили компактные люминесцентные лампы, а линейная их альтернатива неспешно уходит с производства.

Достоинства и недостатки энергосберегающих ламп

От производителя зависит качество выпускаемого продукта. Поэтому достоинства и недостатки у них могут отличаться. Но с общим достоинствам относятся:

  • Экономное энергопотребление, большая светоотдача. При меньшем потреблении энергии уменьшается и нагрузка на проводку.
  • Лампа накаливания служит до 10 раз меньше.
  • На протяжении всего срока эксплуатации качество подачи света не изменяется.
  • Максимальная температура нагрева поверхности лампочки при высокой мощности до 60 градусов. Для сравнения 100 ваттная лампа накаливания нагревается до 95 градусов.
  • Световые оттенки: от теплого до холодного.
  • Устройство ЭСЛ убирает мерцание.
  • Производители дают гарантию на каждую единицу.

Недостатки:

  • Стоимость. Цена обычной – до 25 рублей, энергосберегающей до 400 рублей.
  • Балласт немного выпирает, что мешает при установке.
  • Полная яркость достигается не сразу, а по истечении 0,5–2 минут.
  • Частые включения-выключения сокращают период эксплуатации. Промежуток должен составлять не менее 5 минут.
  • Недопустимо, чтобы лампа разбивалась, особенно в жилом помещении. Если такое произошло, то требуется немедленное проветривание на протяжении двух часов.
  • Проблемы с утилизацией. Нет специальных пунктов приема.

Рак как последствие

Как выяснили учёные из США, концентрация ультрафиолетового излучения, исходящая от лампочки, наносит вред здоровью человека.

Это негативно сказывается на кожном покрове и приводит к преждевременному отмиранию и старению, а в самых тяжёлых случаях – к меланоме и раку кожи.

Производители энергосберегающих лампочек признают, что при работе выделяется некоторое количество ультрафиолета, но утверждают, что доза излучения находится в пределах нормы. Однако результаты исследований показывают, что внешнее покрытие лампочки имеет большое количество микротрещин, которые и являются источником повышенного ультрафиолета.

Помимо раковых заболеваний возможно развитие:

  • аллергической сыпи;
  • экземы;
  • псориаза;
  • отёка кожных тканей.

По утверждениям медицинских экспертов, применение энергосберегающих лампочек способно вызвать:

  • приступы эпилепсии;
  • мигрени;
  • ухудшение тонуса организма.

На сегодняшний момент распространено 2 вида энергосберегающих лампочек: коллагеновые и флуоресцентные. Вторая их разновидность считается наиболее вредной для здоровья человека.

Не рекомендуется применять флуоресцентные лампы мощностью 100 ватт. При наличии этих осветительных приборов в доме, рекомендуется заменить их на лампочки, меньшей мощности.

Израильский учёный Абрахам Хаим утверждает, что вред люминесцентных ламп существенно недооценивают, особенно при использовании в ночное время суток. Дело в том, что энергосберегающая светотехника приводит к нарушению выработки мелатонина из-за излучения голубоватого свечения, которое угнетает шишковидную железу и, как следствие, выработку этого гормона, что, в свою очередь, повышает риск развития рака груди и простаты.

Вечная лампочка своими руками

В основу работы вечной лампы накаливания лежит постепенное увеличение тока, до номинальных значений, за 1 секунду. Обычная лампа при включении загорается сразу, что нередко приводит к её повреждению из-за мгновенной нагрузки и холодной вольфрамовой нити. Используя же специальное устройство, можно будет плавно включать лампочку, что положительно скажется на её ресурсе работы.

Данная схема вечной лампочки позволяет использовать лампы до 200 Вт мощности.

Из элементов, чтобы собрать устройство вечной лампы, понадобятся:

  • Резисторы от 1 до 100 кОм;
  • Конденсатор 2 мкФ;
  • Диоды КД202С для ламп на 200 Вт и КД202Ж для ламп накаливания мощностью до 100 Вт.

Собирать все элементы лучше на небольшом куске платы или на картоне, в качестве ознакомительного варианта.

Как производится ремонт

Чтобы найти причину неисправности, следует разобрать лампу на составные части. Отсоедините верхнюю и нижнюю части и отключите колбу. Используя омметр, проверьте спирали накала на самой колбе. В случае перегорания одной из них выполните ремонт колбы. Для замыкания спирали воспользуйтесь резистором на 10 Ом с высокой мощностью. Кроме того, удалите шунтирующий данную спираль диод (если таковой имеется в схеме).

В случае перегорания резистора в лампах мощностью свыше 30 Вт (включительно) велика вероятность выхода из строя транзисторов, что связано с пробоем конденсатора. Для исправления ситуации монтируется новый резистор, выполняющий функцию предохранителя, а также заменяются транзисторы.

Также возможна модернизация. Просверлите в цоколе отверстия, необходимые для вентиляции. Некоторые модели энергосберегающих ламп выпускаются уже с ними, но попадаются недобросовестные производители, не думающие об охлаждении.

Воздействие на среду

Ртуть, содержащаяся в лампах, вредно влияет не только на человека, но и на растения. Компонент накапливается на растительности, находящейся на почвах с низкими ее концентрациями. А с увеличением в почве данного вещества в надземных и корневых органах растений повышается это количество. Увеличение гуминовых кислот в почве уменьшает количество ртути, усваиваемой растениями из-за образования ртутьорганических комплексов.

Под влиянием микроорганизмов комплексы разрушаются с появлением металлической ртути, которая переходит в атмосферу. Водоросли поглощают ртуть из загрязненного грунта и являются ее источником для организмов. У высших растений корни считаются барьером, который накапливает ее. Ртуть, находящаяся в атмосфере в форме паров, удерживается споровыми и хвойными растениями. Это приводит к ингибированию клеточного дыхания, понижению ферментативной активности.

Ртуть имеет вредное воздействие и на животных. Соли поглощаются водными организмами. Рыбы тоже накапливают данный компонент и удерживают его в виде метилртути. Считается, что поступивший в воду компонент осуществляет аккумулирование и трансформацию в каждом звене водной пищевой цепи. Максимальное содержание достигается на вершине. У животных с накоплением ртути происходит угнетение важных функций, а также снижение жизнеспособности потомства.

История возникновения и использования энергосберегающих ламп

Так уж повелось, что большинство инновационных разработок в сфере высоких технологий реализуются в развитых западных странах, а в Россию возвращаются в виде уже готовых решений. Так было с первым реально работавшим источником электрического света – лампочкой А.Н. Лодыгина, который рассматривал ее в качестве альтернативы газовым уличным фонарям, но не освоил производство. Зато Т. Эдисон, запатентовал все известные на тот момент разработки и организовал производство, за что слывет на Западе «отцом» электрической лампы.

Аналогично складывалась ситуация и с разработкой осветительных приборов, именуемых «энергосберегающими». Газоразрядные лампы были параллельно «изобретены» в СССР в 1951 году, спустя 13 лет после начала их производства в США, а лидер энергосбережения – светодиод, изобретенный в 1923 году ленинградцем Олегом Лосевым, сначала вернулся в Россию в виде дорогих, но крайне ненадежных китайских LED-лампочек.

Современный рынок насыщен разнообразными типами экономичных ламп бытового назначения. Далеко не все из них являются энергосберегающими. В чем же заключается отличие обыкновенной лампы накаливания от энергосберегающей?

Устройство энергосберегающей лампы

Простая лампа накаливания, служащая человечеству более 100 лет, имеет простое устройство. В стеклянную колбу, из которой откачен воздух (вакуум), помещены два электрода, между которыми расположена спираль из тугоплавкого металла (вольфрама). При подаче напряжения на электроды спираль нагревается и начинает светиться. КПД лампы накаливания небольшой – около 20% потребляемой энергии превращается в световую, остальная уходит на нагрев лампы.

В энергосберегающих источниках света используется совершенно иной принцип. В газоразрядных (люминесцентных) лампах электрический разряд в парах ртути возбуждает УФ-излучение, которое активирует люминофор, нанесенный на стенки газовой трубки, и заставляет его светиться белым или цветным светом.

В LED-лампах (светодиодных) выработка фотонов происходит при переходе возбужденного током электрона с одного уровня на другой (P-N переход в полупроводниках).

Экономичность лампы достигается благодаря тому, что в энергосберегающих лампах электроэнергия не тратится на нагрев спирали, как в лампах накаливания.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дуэт-дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: