Грунтовый теплообменник своими руками

Особенности конструкции

Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

  • набора пластин;
  • подвижной и неподвижной плиты;
  • верхней и нижней направляющей округлой формы;
  • элементов крепления, которые объединяют плиты в общую раму.

Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.

На теплообменнике можно управлять мощностью – увеличивать или уменьшать

Преимущества пластинчатых приборов:

  • незначительные производственные и инвестиционные затраты;
  • высокоэффективная теплопередача;
  • малые габариты;
  • эффект самоочистки с помощью высокого турбулентного потока;
  • возможность увеличить КПД благодаря добавлению пластин;
  • высокая степень надежности;
  • легкость промывки;
  • небольшая масса;
  • легкость монтажа;
  • минимальное загрязнение поверхностей;
  • невозможность смешения жидкостей за счет особой конфигурации уплотнения;
  • высокая устойчивость к коррозии;
  • минимальная поверхность теплообмена благодаря высокому КПД;
  • незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
  • эффективная регулировка температуры за счет небольшого объема теплоносителя.

В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

Методы промывки

Есть простые вариации, практические не предусматривающие расходов, есть бюджетные с минимальными вложениями, и профессиональные – стоят намного дороже, но отличаются высокой эффективностью.

Как промыть вторичный теплообменник газового котла тем или иным способом? И когда логично применять их. Всё зависит от объёма отложений.

В самой простой ситуации достаточно механического очищения. Снаружи очищаются рёбра ВТ. В работе применяется любая твёрдая щётка, лопатка, скребок или тросик

Здесь очень важно не повредить пластины

Второй метод –промывка в специальном составе. На практике он сочетается с первым способом и следует сразу после него.

Деталь помещается в ёмкость с кислотной смесью. Вид используемой кислоты: соляная или лимонная. Подходящие пропорции: 100 грамм на 10 литров. Воды.

Кислоты можно заменять любыми препаратами от накипи. Через 30-40 минут ВТ достаётся из ёмкости. С него аккуратно стирается оставшаяся накипь.

Попутно очищается и змеевик. Здесь применяется особый ёршик из стали.

Третий метод – химический. Через ВТ прокачиваются более агрессивные вещества с применением специального насоса. Он присоединяется к патрубкам детали.

Подходящие средства для работы отражены в данной таблице:

Средства Описание Пропорция к воде: граммы: литр Температура

воды

Цена средства (руб.)
Лимонная кислота Популярное народное средство 100 : 10-12 50-70°C 50 – 1 пакетик.
Термагент Актив Универсальная жидкость с мощным эффектом 1 : 9 40-50°C 1500 – канистра на 10 кг.
STEELTEX Cooper Один из самых эффективных препаратов, но годится для работы с деталями из лёгких сплавов 1:6 до 1:10 40-60°C 1300 – ёмкость на 5 кг
Detex Концентрат с эффективными биологическими веществами. Превосходно очищает стальные, чугунные и медные детали 200-500 :10 40-50°C 4900 – канистра 10 л.
Соляная кислота Эффективно убирает сильную накипь 100 : 10 50-70°C 50 – 1 кг

В ёмкость со смесью почти до самого дна кладётся шланг, одной стороной присоединённый к ВТ, а второй – к насосу. Так получается необходимая циркуляция. Процедура длится 30-40 минут. Затем деталь тщательно промывается обычной водой.

Четвёртый метод не предусматривает извлечение компонента. Это гидродинамическая промывка вторичного теплообменника газового котла. Но её осуществляют только профессионалы. Здесь требуется специальная технология и соблюдение критериев безопасности.

Это самый эффективный метод, мягко убирающий все отложения и вычищающий деталь до торгового вида.

  • регионом,
  • мощности и модификацией котла,
  • наценкой компании,
  • применяемой техники и химикатов.

В Москве и центральном регионе клиенты за услуги платят порядка 3 500-9 000. В Питере – 3000 – 7000 руб. В других регионах: 1700 – 4500 руб.

Трубы для отопления

Отдельно следует рассмотреть вопрос о разновидностях труб, используемых для отопления частных домов. У каждого материала определенно есть свои как положительные, так и отрицательные стороны. Давайте разберемся, какой из вариантов является наиболее оптимальным.

Отопление металлическими трубами

К металлическим относят стальные и медные трубы.

Проводка водяного отопления дома из стали обойдется вам сравнительно недорого (и это основной плюс данного материала). Металл этот довольно универсален, подходит как для парового так и для водяного отопления. Выдерживает большое давление. Главным недостатком стальных труб является то, что они быстро поддаются коррозии. Это отражается не столько на качестве отопления, сколько на внешнем виде вашего дома — ржавые трубы не самое лучшее украшение интерьера.

Медные трубы имеют больше преимуществ: они крайне долговечны, хорошо держат температуру, не поддаются коррозии. Еще одним преимуществом медных труб является гладкость их внутренней поверхности, что обеспечивает высокую скорость передвижения жидкости по системе отопления. Самый главный минус меди — ее высокая цена.

Стоит заметить, что как стальные, так и медные трубы подходят только для открытых систем отопления и их нельзя монтировать в стены или полы. Поэтому, как мы видим, и у их универсальности есть предел.

Отопление дома полипропиленовыми трубами

Главным преимуществом полипропиленовых труб является их устойчивость к внешним факторам среды: коррозии, процессам гниения, воздействию бактерий и химических соединений.

Также одним из больших плюсов данного материала является его легкость. Отсюда вытекают другие плюсы: такие трубы проще монтировать, они подходят как для использования на опорной, так и на межкомнатной стене.

Отопление из полипропилена позволяет экономить расход топлива (газа или электричества), используемого для нагрева котла за счет низкого коэффициента трения, так как теплоноситель легко проходит по системе обогрева. Но разница несущественная.

Кроме того, полипропиленовые трубы довольно пластичны, имеют разные модификации с множеством стыков, а также дополнены огромным выбором различных комплектующих, что позволяет осуществить монтаж сложных систем отопления.

И, наконец, отопление полипропиленовыми трубами можно делать как в открытых, так и в закрытых системах, когда все трубы будут спрятаны в пол или стены.

При всех видимых плюсах есть у этих труб и минусы. Во-первых, при довольно высокой устойчивости к химическим воздействиям, такие трубы легко поддаются воздействию механическому (разрезать ее можно обычным кухонным ножом). Во-вторых, не для всех видов отопительных систем подходит полипропилен. Его категорически нельзя использовать в сочетании с парогенератором, но для рассматриваемого нами водяного отопления они отлично подходят. Так же водяное отопление полипропиленом подразумевает наличие большого количества стыков, что сильно влияет на надежность системы

Отопление металлопластиковыми трубами

Если говорить о достоинствах металлопластиковых труб, то можно выделить те же самые плюсы, что и у полипропиленовых собратьев. Но отдельно стоит выделить то, что они способны держать более высокую температуру. А также, и это является их главной отличительной чертой, металлопластик отлично гнется. При этом вы можете не боятся за его повреждение. И этот факт делает данный вид труб идеальным вариантом для системы «теплый пол».

Из недостатков — более высокая цена в сравнении с полипропиленовыми аналогами.

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

Принцип работы

Без медного теплообменника не обходится ни одна отопительная система котлов. Принцип работы прост. Вода начинает циркулировать по змеевикам в трубах, нагревается, течет в трубопровод системы, в радиаторы, из которых возвращается назад, в уже остывшем виде.

В частных домах теплообменник устанавливают в целях превращения печки в водонагревательный котел

При самодельном устройстве важно учитывать размер и форму, чтобы обменник сочетался с габаритами камеры печки

К обменнику подключаются радиаторы, трубопровод, трубы нагреваются равномерно, тепло распределяется по всему дому.

Водяной теплообменник для печи своими руками

Для повышения КПД котла с водяным контуром. Металлическая конструкция из труб большого диаметра будет встраиваться в печь и подключаться к отопительному трубопроводу.

Несколько общих рекомендаций:

  • Диаметр труб не должен быть менее 2,5 см. Иначе теплообменник будет замедлять движение жидкости.
  • Приблизительный расчёт площади теплообменника: 1м2 на 3-5 кВт мощности печи.
  • Но если печь не только отапливает дом, но и греет воду, теплообменник должен «забирать» более 1/10 части тепла.

Конструкция теплообменника – две горизонтальные трубы, между которыми наваривается батарея из 6-9 труб того же диаметра.

  1. Выход теплообменника делается в верхней части, вход (по которому будет подаваться обратка) – в нижней.
  2. На входном и выходном патрубках нарезается резьба для присоединения к трубам отопления.
  3. Установка в полости топки начинается на стадии закладки фундамента печи.
  4. По мере строительства рядов печи, трубчатая конструкция всё время крепится и контролируется её положение (к выходу теплоносителя немного выше от уровня).
  5. Когда печь закончена, теплообменник подсоединяется к отоплению. Делается это при помощи муфты. На одном из концов нарезается длинная резьба, накручивается узкая гайка, потом муфта до упора. Резьбы на второй трубе оборачивается лентой ФУМ, паклей и т. п., потом муфта скручивается в обратную сторону. Чтобы не тёк стык на первой трубе, резьба тоже оборачивается лентой ФУМ и прижимается гайкой.
  6. Система с теплообменником заполняется водой и производится пробная топка.

Качество швов должно быть идеальным, ведь теплообменнику предстоит работать при высоких температурах, доступа к нему не будет, а течи приведут к ремонту всей печи!

Вариантом теплообменника для печи может быть резервуар, внутри которого проходит часть горячей дымовой трубы. Такой прибор легче обслуживать, демонтировать по необходимости, но сделать несколько сложнее.

Технологические схемы подключения теплообменников

На изображении ниже мы видим схему подключения кожухотрубчатых теплообменников вида мб

и направления движения теплоносителей, одним их которых является масло предназначенное для системы смазки турбины, а другим вода, подаваемая в маслоохладители для организации процесса охлаждения.

На схеме

Не много расскажу о составных частях. Охладители мы подробно рассмотрели чуть выше, что и как там происходит, а масляные насосы 4 и 5 служат для закачки масла в них. Остановлюсь подробней на фигуре №6. А это фильтр щелевой, который служит для очистки воды перед подачей ее в охлаждающие или нагревающие устройства. Многие предприятия стараются обходиться без них, кстати поэтому и не указывают на схемах, тем самым подвергая свои устройства возможному преждевременному выходу из строя, из-за более быстрого износа теплообменных элементов и водяных камер вследствии механических воздействий на металлические поверхности различных механических примесей, по сравнению с теми кто использует такие устройства. Подробней о них можно почитать в материале производство емкостных патронных щелевых фильтров. Применение фильтров для установки перед кожухотрубными охладителями или подогревателями с экономической точки зрения очень оправданно, да и с точки зрения правильной организации тепловых процессов.

Сферы применения

Выделяют следующие сферы использования теплообменивающего оборудования:

  • системы охлаждения;
  • отопительные системы;
  • системы кондиционирования;
  • химическая промышленность;
  • обогрев бассейнов;
  • солнечные коллекторы;
  • машиностроение;
  • вентиляционные системы;
  • металлургия;
  • фармация;
  • автопроизводство;
  • пищевая промышленность.

Помимо этого, возможно применение теплообменивающего оборудования для отопления частных домовладений. Установить устройство можно как самостоятельно, так и с помощью мастера. Использование такой техники помогает равномерно распределить тепло в помещении.

Изготовление теплообменника «труба в трубе» своими руками

Принцип работы, плюсы и минусы

По названию понятно, что теплообменник представляет собой большую трубу, внутри которой расположена меньшая. Охлаждающая или нагревающая среда перемещается по внутренней трубе, а жидкость, которую нужно охладить, подаётся во внешнюю.

Теплообменник из трубы может состоять из нескольких звеньев, соединённых последовательно.

Такая несложная конструкция имеет преимущества:

  • подходит для любых теплоносителей;
  • просто изготовить самостоятельно;
  • легко чистить;
  • служит долго;
  • подходит для работы под давлением (в отличие от пластинчатых);
  • можно подобрать скорость движения жидкостей, путём изменения размеров труб.

Однако всё нужно тщательно рассчитывать, а трубы могут обойтись довольно дорого.

Изготовление

Понадобится:

  • Трубки разного диаметра (желательно медь) – 2шт.
  • Тройники т-образные (диаметр такой же, как у большей трубки) – 2 шт.
  • Короткие трубки одинаковой длины, диаметр = выходу тройника. – 2 шт.
  • Сварка и электроды, либо мощный паяльник и припой для меди.
  • Болгарка.
  • Рулетка.

Использовать будем тонкостенные медные трубки. Выбираем подходящие по длине отрезки так, чтобы диаметр одного был минимум на 4мм больше другого (зазор будет по 2 мм с каждой стороны).

  1. На наружную трубку с двух сторон привариваем тройники (боковой стороной).
  2. Вставляем внутрь трубку меньшего диаметра и, проваривая торцы большей трубки, фиксируем в ней внутреннюю трубку.
  3. К выходам т-образных тройников привариваем короткие трубки, по которым будет подходить жидкость.
  4. Если была использована не медная, а стальная заготовка, её эффективность будет значительно ниже. Имеет смысл увеличить площадь рабочей поверхности, сделав батарею из отдельных теплообменников. Они последовательно соединяются небольшими отрезками труб, приваренных то к одному, то к другому тройнику. В результате должна получиться змейка.

Для работы с загрязнёнными средами теплообменники делаются разборными, чтобы была возможность чистить его в будущем. Для чистых жидкостей делают неразборные теплообменники.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

https://youtube.com/watch?v=pOTVV58Rj3U

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Характеристики и расчет

Пластины и уплотнители в качестве главных деталей теплообменных устройств производятся из разных по своим показателям и характеристикам материалов. Во время выбора в пользу определенного изделия основную роль играет его предназначение и сфера применения.

Если рассматривать отопительные системы и ГВС, то в этой сфере чаще всего используются пластины, которые сделаны из нержавейки, и пластичные уплотнители из специальной резины NBR или EPDM. Наличие пластин из нержавеющей стали дает возможность работать с тепловым носителем, нагретым до 120 градусов, в другом же случае теплообменник может разогревать жидкость до 180°C.

Между пластинами  для герметизации расположены прокладки

При применении теплообменников в промышленной сфере и их подключении к технологическим процессам с действием масел, кислот, жиров, щелочей и других агрессивных сред используются пластины, которые сделаны из титана, бронзы и иных металлов. В этих случаях требуется установка асбестовых или фторкаучуковых прокладок.

Выбор теплообменника выполняется с учетом расчетов, которые производятся с помощью специального программного обеспечения.

Во время расчетов необходимо учитывать:

  • расход нагреваемой жидкости;
  • изначальная температура теплового носителя;
  • затраты теплоносителя на отопление;
  • необходимая температура прогревания.

В качестве нагревающей среды, которая протекает через теплообменник, может применяться нагретая вода до температуры 90-120°C или пар с температурой до 170°C. Тип теплового носителя подбирается с учетом вида используемого котельного оборудования. Размеры и число пластин выбираются так, чтобы получился теплоноситель с температурой, которая соответствует действующим стандартам — не выше 65°C.

Теплообменник может быть изготовлен из разных видов металла

Необходимо сказать, что главными техническими характеристиками, которые при этом также считаются и основными преимуществами, являются компактные габариты оборудования и возможность обеспечить довольно значительный расход.

Диапазон площадей обмена и вероятных расходов у аппаратов довольно высокий. Самые маленькие из них, к примеру, от компании Alfa Laval, имеют размер поверхности до 1 м² и при этом обеспечивают прохождение количества теплоносителя до 0,3 м³/час. Наиболее же габаритные приборы имеют размер около 2500 м² и расход, который превышает 4000 м³/час.

Список литературы […]

  1. De Paepe M, Janssens A (2003) Thermo-hydraulic design of earth-air heat exchangers. Energy Build 35:389–397

  2. REHAU ECOAIRTM GROUND-AIR HEAT EXCHANGE SYSTEM

  3. Yupeng Wu, Guohui Gan, Anne Verhoef, Pier Luigi Vidale, Raquel Garcia Gonzalez. Experimental measurement and numerical simulation of horizontal-coupled Slinky Ground Source Heat Exchangers. Applied Thermal Engineering, Elsevier, 2010

  4. Saqib Javed, Thermal Modelling and Evaluation of Borehole Heat Transfer, Thesis for the degree of Doctor of Philosophy, Building Services Engineering Department of Energy and Environment, CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Sweden 2012

  5. Trilok Singh Bisoniya, Anil Kumar, Prashant Baredar, «Study on Calculation Models of Earth-Air Heat Exchanger Systems», Journal of Energy, vol. 2014, Article ID 859286, 15pages, 2014.

  6. Bisoniya, T.S. Design of earth–air heat exchanger system. Geotherm Energy 3, 18 (2015).

  7. Larwa, Barbara, et al. «Heat conduction in the ground under natural conditions and with heat exchanger installed.» Czasopismo Techniczne (2015).

  8. Łukasz Amanowicz, Janusz Wojtkowiak, Thermal performance of multi-pipe earth-to-air heat exchangers considering the non-uniform distribution of air between parallel pipes, Geothermics, Volume 88, 2020

Изготовление теплообменника

Приведем пошаговую инструкцию, как изготовить самостоятельно такое устройство.

  1. Вырежьте два круга диаметром 30 см. (Заглушки). Размеры учитывайте исходя из вашего дымохода.
  2. Разметьте на каждом листе места размещения труб, самая большая должна проходить в центре. Средняя трубка 58 мм, восемь маленьких по 32 мм.
  3. Поочередно приваривайте трубы к заглушкам
  4. Приварите вторую заглушку к трубам.
  5. Изготовьте бак.
  6. Сбоку металлического кожуха проделайте два отверстия, по противоположным сторонам.
  7. На стенках теплообменника сделать выход под патрубки.
  8. Готовую сердцевину вставьте в кожух. Закрепите с помощью сварки.
  9. Приварите теплообменник к дымоходу.
  10. Обработайте конструкцию термостойкой краской.


Самодельный теплообменник

Советы опытных печников

Используя чертёж, сделайте на полу «черновик» – без глины сложите несколько рядов будущей печи.

Шов должен быть 3-5 мм толщиной. Это достигается консистенцией раствора и постукиванием по кирпичу рукояткой мастерка.

Колосниковая решетка

При встраивании колосников, не используют раствор, чтобы в будущем можно было заменить решётку.

После сооружения печи, лучше подождать 2-3 недели, до начала её использования.

Проверяют тягу, путём сжигания бумаги. Регулируют зазоры заслонок и дверцы поддувала.

Этот старинный способ отделки сегодня особенно ценится, он придаёт помещению особый статус.

Но вместо изразцов можно использовать современную керамическую плитку, искусственный камень, специальную штукатурку, краски, или можно сразу сложить печь голландку своими руками из кирпича с декоративными гранями. Самый простой и недорогой способ – побелка.

Как изготовить самодельный теплообменник

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Особенности конструкции

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Особенности монтажа

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления

Обратим внимание и на другие сферы их применения

Как самостоятельно изготовить устройство

Несложный змеевик несложно изготовить самостоятельно из медной трубки. Для дымохода диаметром 100 мм подойдет медная трубка с диаметром ¼ дюйма и длиной 3-4 м. К концам трубы следует припаять фитинги с резьбой. Затем трубку заполняют мелким песком, закручивают их и обматывают дымоход.

Между витками желательно оставлять небольшое расстояние – тогда труба от дымохода будет нагреваться и теплопередачей, и инфракрасным излучением. Эту работу удобно выполнять с помощником. Затем песок из трубы вымывают водой под давлением. Присоединяют трубы, ведущие к радиаторам и расширительному баку.

Теплообменник Кузнецова выполняют при помощи сварки. Самый простой вариант – изготовить корпус из газового баллона или трубы большого диаметра.

Для изготовления понадобятся следующие материалы:

  1. Газовый баллон, труба большого диаметра (300 мм) для корпуса.
  2. Труба диаметром 32 мм (одну заготовку лучше взять большего диаметра – до 57 мм). Длина заготовок – 300-400 мм, общее количество должно быть достаточно для вырезания заготовок.
  3. Два небольших патрубка одного диаметра с диаметром дымохода; желательно использовать трубу дымохода – если дымоход сборный, то с одной стороны конструкции патрубок будет с раструбом, который необходим для монтажа теплообменника.
  4. Два фрагмента стального листа, достаточных, чтобы вырезать заглушки торцов корпуса.

Технология изготовления воздушного теплообменника:

  1. Большая труба или баллон обрезается в нужный размер.
  2. Нарезаются 9 заготовок такой же длины из тонких труб.
  3. Вырезаются круги для заглушек.
  4. В кругах вырезаются 9 отверстий для труб маленького диаметра; если берется одна трубка большего диаметра, то отверстие для нее вырезается в центре.
  5. Тонкие трубы вставляются в отверстия заглушек, наживляются при помощи сварки, затем привариваются.

В корпусе по бокам вырезаются отверстия с диаметром, равным диаметру дымохода.

Конструкция из тонких трубок и заглушек вставляется в корпус и проваривается по стыку заглушек и корпуса из большой трубы.

В отверстия по бокам корпуса вставляются патрубки и также провариваются.

Какие материалы можно использовать

Идеальный вариант – нержавеющая сталь (например, пищевая аустенитная нержавейка 08Х18Н10 или AISI 304) или медь. Изделия промышленного производства иногда изготавливают из титана. Но цена на эти материалы достаточно велика. Зато они долговечны, не ржавеют, надежны и прочны. Если у вас буржуйка в гараже или самодельная каменка из подручных материалов в бане, вполне возможно применить и черный металл (углеродистую сталь).

Можно применить качественную гофрированную трубу из нержавейки. Оцинкованная гофра – нежелательный и недолговечный вариант. Для змеевика можно применять и алюминиевые трубы (только не для дымоходов твердотопливных печей).

Иногда применяют и оцинкованную сталь, но следует иметь в виду, что при сварочных работах слой цинка испаряется, и все преимущества оцинковки (стойкость к коррозии) сходят на нет. При температуре выше 400 °С цинк начинает испаряться (пары цинка токсичны), поэтому не стоит применять оцинковку для теплообменников на дымоходах твердотопливных котлов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дуэт-дом
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: